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a b s t r a c t

This paper proposes a general approach to the problem of extrinsic calibration of multiple sensors of
varied modalities. This is of particular relevance for intelligent vehicles, which are complex systems
that often encompass several sensors of different modalities. Our approach is seamlessly integrated
with the Robot Operating System (ROS) framework, and allows for the interactive positioning of
sensors and labelling of data, facilitating the calibration procedure. The calibration is formulated as
a simultaneous optimization for all sensors, in which the objective function accounts for the various
sensor modalities. Results show that the proposed procedure produces accurate calibrations, on par
with state of the art approaches which operate only for pairwise setups.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Intelligent vehicles require a considerable amount of on-board2

sensors, often of multiple modalities (e.g. camera, LiDAR, etc.)3

in order to operate consistently. The combination of the data4

collected by these sensors requires a transformation or projection5

of data from one sensor coordinate frame to another. The process6

of estimating these transformations between sensor coordinate7

systems is called extrinsic calibration. An extrinsic calibration8

between two sensors requires an association of data from one9

sensor to the data of another. By knowing these data associations,10

an optimization procedure can be formulated to estimate the11

parameters of the transformation between those sensors that12

minimizes the distance between associations. Most calibration13

approaches make use of calibration patterns, i.e., objects that are14

robustly and accurately detected by distinct sensor modalities.15

Although there have been many solutions available in the16

literature, on the topic of calibration, there is no straightfor-17

ward solution for the calibration of multiple sensors in intelligent18

vehicles, or robots in general. There are multiple factors that19

contribute to this lack of solutions. The majority of works on cal-20

ibration focus on sensor to sensor pairwise calibrations: between21

only cameras [1–5] or between cameras and LiDARs [6–10]. When22
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considering pairwise combinations of sensors, there are several 23

possibilities, according to the modality of each of the sensors in 24

the pair. Most of them have been addressed in the literature: RGB 25

to RGB camera calibration [1–5,7]; RGB to depth camera (RGB-D 26

cameras) calibration [11–16]; camera to 2D LiDAR [6,7,10,15,17– 27

20]; 2D LiDAR to 3D LiDAR [8]; camera to 3D LiDAR [10,21,22]; 28

and camera to radar [23]. 29

Nonetheless, all these approaches have the obvious short- 30

coming of operating only with a single pair of sensors, which 31

is not directly applicable to the case of intelligent vehicles, or 32

more complex robotic systems in general. To be applicable in 33

those cases, pairwise approaches must be arranged in a graph- 34

like sequential procedure, in which one sensor calibrates with 35

another, that then relates to a third sensor, and so forth. Another 36

option is to establish one sensor as the reference sensor and link 37

all other sensors to it. In this case, the graph of transformations 38

between sensors results in a one level pyramid, which contains 39

the reference sensor on top and all other sensors at the base. 40

One example is [7], in which a methodology for calibrating the 41

ATLASCAR2 autonomous vehicle [24] is proposed, wherein all 42

sensors are paired with a reference sensor. Sequential pairwise 43

approaches have three major shortcomings: (i) transformations 44

are estimated using only data provided from the selected sensor 45

tandem, despite the fact that data from additional sensors could 46

be available and prove relevant to the overall accuracy of the 47

calibration procedure; (ii) sensitivity to cumulative errors, since 48

the transformations are computed in a sequence (in fact, this does 49

not occur in [7], since the pose of a specific sensor only depends 50
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on the reference sensor pose); (iii) structure of transformation1

graph is enforced by the nature of the calibration procedure,2

rather than being defined by the preference of the programmer,3

which could compromise some robot functionalities. Fig. 1 shows4

a conceptual example in which these problems are visible.5

There are a few works which address the problem of calibra-6

tion from a multi-sensor, simultaneous optimization, perspective.7

In [25], a joint objective function is proposed to simultaneously8

calibrate three RGB cameras with respect to an RGB-D camera.9

Authors report a significant improvement in the accuracy of the10

calibration. In [26], an approach for joint estimation of both11

temporal offsets and spatial transformations between sensors is12

presented. This approach is one of few that is not designed for13

a particular set of sensors, since its methodology does not rely14

on unique properties of specific sensors. It is able to calibrate15

systems containing both cameras and LiDARs. Moreover, the ap-16

proach does not require the usage of calibration patterns for the17

LiDARs, using the planes present in the scene for that purpose.18

In [27], a joint calibration of the joint offsets and the sensors19

locations for a PR2 robot is proposed. This method takes sensor20

uncertainty into account and is modelled in a similar way to the21

bundle adjustment problem.22

Our approach is similar to [27], in the sense that we also em-23

ploy a bundle adjustment-like optimization procedure. However,24

our approach is not focused on a single robotic platform, rather25

it is a general approach that is applicable to any robotic system,26

which also relates it with [26].27

This paper is an extension of [28], where the general ap-28

proach was originally proposed. This extension focuses on the29

comparison of this work against state of the art calibration ap-30

proaches, i.e. methodologies provided by Open Source Computer31

Vision Library (OpenCV) [29] as well as the calibration method32

from [26].33

Robot Operating System ROS [30] based architectures are the34

standard when developing robots. There are several ROS based35

calibration packages available.123 In addition, some approaches36

are well integrated with ROS since the input data for the cal-37

ibration is provided as a rosbag file. Despite this, no approach38

provides a complete solution for the calibration of intelligent39

vehicles. Thus, the seamless integration with ROS became a core40

component of the proposed approach. To that end, the pro-41

posed calibration procedure is self-configured using the standard42

ROS robot description files, the Unified Robot Description Format43

(URDF), and provide several tools for sensor positioning and data44

labelling based on RVIZ interactive markers.45

The remainder of this paper is organized as follows: Sec-46

tion 2 describes the methodologies used to set up an optimization47

procedure which calibrates the system. In this section, several48

auxiliary tools for labelling data and positioning sensors are de-49

scribed; Section 3 details the optimization procedure and how50

it is cast as a bundle adjustment problem; Section 4 provides51

comparisons with established OpenCV calibration methodologies;52

finally, Section 5 provides conclusions and future work.53

2. ROS based calibration setup54

A schematic of the proposed calibration procedure is displayed55

in Fig. 2. It consists of five components: configuration; interactive56

positioning of sensors; interactive labelling of data; collection of57

data; and finally, the optimization procedure. Each component58

will be described in detail in the following subsections.59

1 http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration.
2 http://wiki.ros.org/openni_launch/Tutorials/IntrinsicCalibration.
3 https://github.com/code-iai/iai_kinect2.

2.1. Configuration of the calibration procedure 60

Robotic platforms are described in ROS using a xml file called 61

URDF. We propose to extend the URDF description files of a robot 62

in order to provide information necessary for configuring how the 63

calibration should be carried out. A new URDF element, named 64

calibration, is introduced specifically for the purpose of calibrat- 65

ing. Each calibration element describes a sensor to be calibrated. 66

The element contains information about the calibration parent 67

and child links, which define the partial transformation that is 68

optimized. 69

2.2. Interactive positioning of sensors 70

Optimization procedures suffer from the known problem of 71

local minima. This problem tends to occur when the initial so- 72

lution is far from the optimal parameter configuration. Thus, 73

it is expected that, by ensuring an accurate first guess for the 74

sensor poses, there is less likelihood of falling into local minima. 75

We propose to solve this problem in an interactive fashion: the 76

system parses the URDF robot description and creates an rviz 77

interactive marker associated with each sensor. It is then pos- 78

sible to move and rotate the interactive markers. This provides 79

a simple, interactive method to manually calibrate the system 80

or, alternatively, to easily generate plausible first guesses for the 81

poses of the sensors. Real time visual feedback is provided by the 82

observation of the bodies of the robot model (e.g. where a LiDAR 83

is placed w.r.t. the vehicle), and also by the data measured by 84

the sensors (e.g. how well the measurements from two LiDARs 85

match). An example of this procedure can be watched at https: 86

//youtu.be/zyQF7Goclro. 87

2.3. Interactive data labelling 88

Since the goal is to propose a calibration procedure that op- 89

erates on multi-modal data, a calibration pattern adequate to 90

all available sensor modalities must be selected. A chessboard 91

pattern is a common calibration pattern, in particular for RGB 92

and RGB-D cameras. To label image data, one of the many avail- 93

able image-based chessboards detectors is used (Find Chessboard 94

Corners OpenCV function4). In the case of 2D LiDAR data, it is 95

not possible to robustly detect the chessboard, since there are 96

often multiple planes in the scene derived from other structures, 97

such as walls and doors. To solve this, we propose an interactive 98

approach which requires minimal user intervention: rviz interac- 99

tive markers are positioned along the LiDAR measurement planes 100

and the user drags the marker to indicate where in the data 101

the chessboard is observed. This is done by clustering the LiDAR 102

data, and selecting the cluster which is closer to the marker. This 103

interactive procedure is done only once, since it is then possible 104

to track the chessboard robustly. Fig. 3 shows an example of 105

the labelling of 2D LiDAR data. This interactive data labelling 106

procedure is showcased in https://youtu.be/9pGXShLIEHw. 107

2.4. Collecting data 108

Usually, different sensors stream data at different frequencies. 109

However, to compute the associations between the data of mul- 110

tiple sensors, temporal synchronization is required. While some 111

approaches require hardware synchronization to operate [26], in 112

the current method this is solved trivially by collecting data (and 113

the corresponding labels) at user defined moments in which the 114

scene has remained static for a certain period of time. In static 115

4 https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_
3d_reconstruction.html#findchessboardcorners.
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Fig. 1. Two methodologies for solving the calibration of complex systems using pair-wise approaches: (a) sequential pairwise; (b) one level pyramid using a reference
sensor. The estimated transformations use the arrangements shown in solid colour arrows. Other possible arrangements are presented in dashed grey lines. Note
that in both cases only a subset of the available transformations is used.

Fig. 2. The proposed calibration procedure: (a) initialization from xacro files and interactive first guess; (b) data labelling and collecting.

scenes, the problem of data desynchronization is not observable,1

which warrants the assumption that for each captured collection2

the sensor data is synchronized. We refer to these snapshot3

recordings of multi-sensor data as data collections.4

This information is stored in a JSON file that will be read by5

the optimization procedure afterwards. The JSON file contains6

abstract information about the sensors, such as the sensor trans-7

formation chain, among others, and specific information about8

each collection, i.e., sensor data, partial transformations, and data9

labels. It is important to note that the set of collections should10

contain as many different poses as possible. As such, collections11

should preferably have different distances and orientations w.r.t.12

the chessboard so that the calibration becomes more reliable. This13

concern is common to the majority of calibration procedures.14

2.5. Sensor poses from partial transformations15

The representation of a complex, multi-sensor system requires16

the creation of a transformation graph. For this purpose, ROS uses17

a graph tree referred to as tf tree [31]. One critical factor for any18

calibration procedure is that it should not change the structure of19

that existing tf tree. The reason for this is that the tf tree, derived20

from the URDF files by the robot state publisher,5 also supports21

5 http://wiki.ros.org/robot_state_publisher.

additional functionalities, such as robot visualization or collision 22

detection. If the tf tree changes due to the calibration, those 23

functionalities may be compromised or require some redesigning. 24

To accomplish this, we propose to compute the pose of any partic- 25

ular sensor (i.e., the transformation from the Reference Link, also 26

known as World, to that Sensor) as an aggregate transformation 27

A, obtained after the chain of transformations for that particular 28

sensor, extracted from the topology of the tf tree: 29

A =

sensor−1∏
i=world

iTi+1 =

prior links  
parent−1∏
i=world

iTi+1 ·

to be calibrated  
parentTchild ·

later links  
sensor−1∏
i=child

iTi+1 ,

(1) 30

where iTi+1 represents the partial transformation from the ith 31

to the i + 1 link, and parent and child are the indexes of the 32

calibration parent and calibration child links in the sensor chain, 33

respectively. 34

Our approach preserves the predefined structure of the tf 35

tree, since, during optimization, only one partial transformation 36

contained in the chain is altered (the one in blue in Eq. (1)). 37

This computation is performed within the optimization’s cost 38

function. Therefore, a change in one partial transformation affects 39

the global sensor pose, and consequently, the error to minimize. 40

The optimization may target multiple links of each chain, and is 41

http://wiki.ros.org/robot_state_publisher
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Fig. 3. Interactive labelling of 2D LiDAR data: (a) creation of interactive marker on the sensor body, (b) dragging and dropping the marker on top of the data cluster
containing the chessboard plane, (c) and (d) subsequent automatic tracking of the chessboard plane.

Fig. 4. Conceptual transformation graph for a complex robotic system. Each
sensor has a respective calibration partial transformation, denoted by the solid
edges. Dashed edges contain transformations which are not optimized (they may
be static or dynamic). Each sensor has a corresponding link to which the data
it collects is attached, denoted in the figure by the solid thin ellipses. Very
few approaches in the literature are capable of calibrating such a system while
preserving the initial structure of the graph of transformations.

agnostic to whether the remaining links are static or dynamic,1

since all existing partial transformations are stored for each data2

collection.3

To the best of our knowledge, our approach is one of few4

which maintains the structure of the transformation graph before5

and after optimization. This is a feature that is often overlooked,6

yet it is of critical practical importance for the selection of a7

calibration framework.8

Taking the example of Fig. 4, consider that Sensor 1 is mounted9

on top of a pan and tilt unit, where LinkATLink C corresponds to the10

pan movement, and LinkCTSensor 1 represents the tilt motion. For11

this particular case, Eq. (1) becomes: 12

ASensor 1
=

prior links
I ·

to be calibrated  
R LinkTLink A ·

later links  
Link ATLink C  
pan motion

·
Link CTSensor 1  

tilt motion

,

(2) 13

where I is the identity matrix (since there are no prior links), 14

and the pan and tilt motions are coloured in red to denote that 15

these transformations are dynamic and, as a consequence, may 16

also change from collection to collection. 17

Another example is the one of Sensor 2: it contains an aggre- 18

gate transformation that also includes the partial transformation 19

optimized w.r.t. Sensor 1, resulting in the following aggregate 20

transformation: 21

ASensor 2
=

prior links  
R LinkTLink A  
to be calibrated

·

to be calibrated  
Link ATSensor 2 ·

later links
I ,

(3) 22

which is also directly derived from Eq. (1). 23

Such complex arrangements are seldom tackled by a single 24

calibration approach, even less in a transparent way by the same 25

general formalism. The proposed optimization of partial transfor- 26

mations achieves this goal. We consider the ability to preserve 27

the structure of the tf tree as a key feature of the proposed 28

framework: from a practical standpoint, since it facilitates the 29

integration into ROS, both before and after the optimization; and, 30

moreover, from a conceptual perspective, since this formulation 31

is general and adequate to handle most calibration scenarios. 32

3. Calibration procedure 33

The goal of general optimization procedures is to find the pa- 34

rameter configuration that results in the smallest function value. 35

This function, which depends on the optimization parameters Φ 36

is known as the objective function. For the purpose of calibrating 37

the multi-modal sensors of a robotic platform, like the ATLAS- 38

CAR2 intelligent vehicle, the objective of this optimization is to 39

estimate the pose of each sensor relatively to a reference link 40

(base link for ATLASCAR2 case). 41
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3.1. Optimization parameters1

An extrinsic calibration translates into a pose estimation. Thus,2

the set of parameters to optimize, defined as Φ, must contain3

parameters that together define the pose of each sensor. As4

discussed in the beginning of Section 2, we propose to maintain5

the initial structure of the transformation graph, and thus only6

optimize one partial transformation per sensor. In the example of7

Fig. 4, these partial transformations are denoted by solid arrows.8

Since the usage of camera sensors is considered, it is also possible9

to introduce the intrinsic parameters of each camera in the set10

Φ. Our goal is to define an objective function that is able to11

characterize sensors of different modalities.12

Pairwise methodology for devising the cost function results13

in complex graphs of exhaustive definition of relationships. For14

every existing pair of sensors, these relationships must be es-15

tablished according to the modality of each of the sensors, and,16

although most cases have been addressed in literature, as dis-17

cussed in Section 1, a problem of scalability remains inherent to18

such a solution. To address this issue, we propose to structure the19

cost function in a sensor to calibration pattern paradigm, similar20

to what is done in bundle adjustment. That is, the positions21

of 3D points in the scene are jointly refined with the poses of22

the sensors. These 3D points correspond to the corners of the23

calibration chessboard. What is optimized is actually the trans-24

formation that takes these corners from the frame of reference25

of the chessboard to the world, for every collection. All variables26

must have some initial value, so that the optimizer may compute27

the first error, and start to refine the values in order to obtain the28

minimum of the cost function. The first guess for each chessboard29

is obtained by computing the pose of a chessboard detection in30

one of the cameras available. The output is a transformation from31

the chessboard reference frame to the camera’s reference frame.32

Since we already have the first guess for the poses of each sensor,33

calculated as an aggregate transformation A (see Eq. (1)), to obtain34

the transformation from the chessboard reference frame to the35

world (an external and absolute frame), the following calculation36

is applied:37

chessTworld =

Eq. (1)  
cameraAworld ·

chess detection  
chessTcamera ,

(4)38

where chess and camera refer to chessboard and camera coor-39

dinate frames, respectively. Thus, the set of parameters to be40

optimized Φ, contains the transformation represented in Eq. (4),41

for each collection, along with the poses of each sensor:42

Φ =

[ Cameras  
xm=1, rm=1, im=1, dm=1, . . . , xm=M , rm=M , im=M , dm=M ,

LiDARs  
xn=1, rn=1, . . . , xn=N , rn=N ,

Other modalities  
. . . ,

Calibration object  
xk=1, rk=1, . . . , xk=K , rk=K

]
(5)43

where m refers to the mth camera, of the set of M cameras, n44

refers to the nth LiDAR, of the set of N LiDARs, k refers to the45

chessboard detection of the kth collection, contained in the set of46

K collections, x is a translation vector [tx, ty, tz], r is a rotation47

represented through the axis/angle parameterization [r1, r2, r3]48

(where the vector [r1, r2, r3] is used to represent the axis and its49

norm the angle), i is a vector of a camera’s intrinsic parameters50

[fx, fy, cx, cy], and d is a vector of camera’s distortion coefficients51

[d0, d1, d2, d3, d4]. The initial estimate for the intrinsic parame-52

ters is obtained using any intrinsic camera calibration tool. The53

axis/angle parameterization was chosen because it has 3 compo-54

nents and 3 degrees of freedom, making it a fair parameterization,55

since it does not introduce more numerical sensitivity than the 56

one inherent to the problem itself [32]. 57

At this point, there are six parameters per sensor, related to 58

the pose of each one, to be enhanced. These values compose 59

the geometric transformation that will be calibrated. The cost 60

function will compute the residuals based on an error (in pixels 61

for RGB cameras and in millimetres for LiDARs) between the 62

re-projected position of the chessboard, estimated by all trans- 63

formations, and the position of the calibration pattern detected 64

by each sensor. 65

3.2. Objective function 66

The cost function for this optimization, F (Φ), can be thought of 67

as the sum of several sub-functions that compose a vector func- 68

tion, where, for every modality of sensor added to the calibration, 69

a new sub-function is defined accordingly, which allows for the 70

minimization of the error associated with the pose of sensors of 71

that modality. Thus, the optimization procedure can be defined 72

as: 73

argmin
Φ

F (Φ) =
1
2

∑
i

fi(Φi1 , . . . ,Φik )
2 (6) 74

where fi(·) is the objective sub-function for the ith sensor with the 75

respective parameters block {Φi1 , . . . ,Φik}, being k the parame- 76

ters number of each objective sub-function. In other words, the 77

scalar cost function of this optimization is the sum of the squares 78

of the returned values from a vector function, divided by two. 79

Each different sensor has an inherent sub-function, that depends 80

on the sensor modality. The value of all these sub-functions is a 81

vector with the errors (residuals) associated to the re-projection 82

of the calibration pattern points. Since for the ATLASCAR2 intel- 83

ligent vehicle we are considering four sensors (two cameras and 84

two 2D LiDARs), the objective function is composed by the vector 85

values of four sub-functions, two of each type. Each different 86

sub-function is detailed in the next sub-sections. 87

3.2.1. Camera sub-function 88

When the sensors are cameras, their calibration is performed 89

as a bundle adjustment [33], and as such, the sub-function cre- 90

ated is based on the average geometric error corresponding to the 91

image distance between a projected point and a detected one. The 92

3D points corresponding to the corners of the calibration chess- 93

board are captured by one or more cameras in each collection. 94

Each camera is defined by its pose relative to a reference link and 95

intrinsic parameters. After the desired acquisitions are completed, 96

the 3D points are projected from the world into the images and 97

the 2D coordinates are compared to the ones obtained by detec- 98

tion of the calibration pattern in the corresponding images. The 99

positions of the 3D points in the world are obtained by applying 100

the transformation described in Eq. (4) to the chessboard corner 101

points defined in the chessboard detection’s reference frame. The 102

goal of this cost sub-function is to adjust the initial estimation of 103

the camera parameters and the position of the points, in order to 104

minimize the average reprojection error fcamera, given by: 105

fcamera =
[
ℓ2(xc=1, x̂c=1) ℓ2(xc=2, x̂c=2) · · · ℓ2(xc=C , x̂c=C )

]⊺
(7) 106

where ℓ2 is the Euclidean distance between two vectors, c de- 107

notes the index of the chessboard corners, xc denotes the pixels 108

coordinates of the measured points (given by chessboard detec- 109

tion), and x̂c are the projected points, given by the relationship 110

between a 3D point in the world and its projection on an image 111

plane. 112
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Fig. 5. Example of reprojection of chessboard corners during the optimization
procedure: squares denote the position of the detected chessboard corners
(ground truth points); crosses denote the initial position of each projected corner;
points denote the current position of the projected corners.

By knowing the real size of the chessboard squares, the 3D1

coordinates of all corners relatively to the chess frame can be2

inferred. Note that the z value will be, for every point, zero,3

since the chessboard is in the XoY plane. After obtaining the4

3D coordinates of all corners in reference to the chessboard5

frame, the objective function computes the coordinates of the6

points relatively to the camera link through multiplying by the7

geometric transformation between the base link (reference frame8

for the ATLASCAR2 example) and the calibration pattern frame9

and by the transform between the camera link and the base link:10

pcamera
=

cameraTworld ·
worldTchess · pchess (8)11

where pchess refers to the x, y, z coordinates of a chessboard12

corner, defined in the local chessboard coordinate frame, and13

pcamera refers to the x, y, z coordinates of the same chessboard14

corner, defined in the camera link. In fact, both pchess and pcamera
15

are the homogenized matrices of the coordinates so that Eq. (8)16

is mathematically correct.17

Note that the parameters to be optimized define the chess-18

board to world transformation, and that the world to camera19

transformation is computed from an aggregate of several partial20

transformations, one of which is defined by other parameters21

being optimized; furthermore, the intrinsic matrix is dependent22

on parameters which are accounted for in the optimization. As23

is expected, the re-projected points become closer to the ground24

truth corners during the optimization procedure. Fig. 5 shows the25

difference between the initial position of the chessboard corners,26

projected from the 3D world to the camera image, and the final27

position of these same projected points, after the optimization28

has been completed.29

It is possible to observe that the pixels corresponding to the30

projection of the final position of the points (dots in Fig. 5) almost31

perfectly match the ground truth points (squares in Fig. 5).32

3.2.2. Laser sub-function33

Finally, for the case of 2D LiDARs, the sub-function only con-34

siders the two border points, among all the measurements that35

are related to the chessboard plane, to compute the error as-36

sociated to the pose of the LiDAR and the chessboard. In order37

to calculate the residuals that this cost sub-function should re-38

turn, the detected points’ 3D coordinates from the chessboard39

frame are required. During the calibration setup stage, when the40

information of a time stamp is saved, the ranges of all mea-41

surements that the LiDAR is detecting are stored, as well as the42

Fig. 6. Chessboard: graphics visualization of the created grid and boundary
correspondent to the real chessboard (a); image of the real chessboard (b).

information about this same LiDAR and the indexes of the ranges 43

that correspond to the plane where the chessboard is. With the 44

optimization parameters of the chessboard pose and the LiDAR 45

pose (computed accordingly to Eq. (1)), both relative to the base 46

link, the 3D coordinates of each labelled measurement of the 47

point cloud in the chessboard frame are known: 48⎡⎢⎣x
y
z
1

⎤⎥⎦
chess

=
chessTworld ·

worldTlidar ·

⎡⎢⎣x
y
z
1

⎤⎥⎦
lidar

. (9) 49

Finally, with the coordinates from the chessboard frame, of both 50

the first and the last points of the cluster extracted in the labelling 51

stage, it is possible to compute the error evaluated by this cost 52

sub-function. The error is based on the distance between each one 53

of the limit points (the first and the last index) of the selected 54

ranges and the chessboard surface boundaries. There are two 55

computed distances for each point: orthogonal and longitudinal. 56

The orthogonal distance is the z absolute value of the coordinates, 57

in the calibration pattern frame, of the LiDAR data measurement. 58

In an ideal setting, the z value should be zero, since the chess- 59

board plane is on the XoY plane. This is why any value different 60

from zero means that the optimization parameters (sensor pose 61

and chess pose) are not yet correct. The longitudinal distance is 62

the Euclidean distance between the x and y coordinates, in the 63

calibration pattern frame, of the LiDAR data measurement and 64

the x and y coordinates of the closest point that belong to the 65

limit of the physical board that is being detected. In order to 66

compute this distance, it is essential to create a group of points 67

that represent the boundaries of the chessboard. By knowing the 68

size of the board, the size of each chess square, and that the chess 69

frame origin matches with the first (top left) chess corner, the 70

coordinates were calculated and the points of the board bound- 71

aries were manually defined. The size of the border between the 72

chess corner grid and the end of the physical chessboard had to 73

be measured so that this step could be implemented. In Fig. 6, 74

we can see the grid of the chess corners and a line around it: 75

that line marks the limit of the board. This solid line has some 76

points within it, which are going to be compared to the LiDAR 77

data measured ones. 78

Again, the optimizer will search for the closest limit point to 79

each one of the studied LiDAR data measurement coordinates 80

and then compute the longitudinal distance. Thus, the LiDAR 81

sub-function flidar is defined as: 82

flidar =

[
|zchess1 | ℓ2(pboardlimit

1 , pchess
1 ) |zchess2 | ℓ2(pboardlimit

2 , pchess
2 )

]⊺

(10) 83

where 84

pboardlimit
=

[
x
y

]boardlimit

, (11) 85

pchess
=

[
x
y

]chess

, (12) 86
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Fig. 7. ATLASCAR2: Autonomous vehicle from the Department of Mechanical
Engineering of the University of Aveiro; the sensors are indicated by the Ellipses.

and zchess is the third coordinate value of the range measurement1

points transformed to the chessboard’s coordinate frame.2

3.3. Sensors pose calibration: Optimization3

The cost function F (Φ) from Eq. (6) is minimized using a least-4

squares approach.6 Least-squares finds a local minimum of a5

scalar cost function, with bounds on the variables, by having an6

m-dimensional real residual function of n real variables. As such,7

we choose this minimization approach as it is the best fit for our8

problem.9

4. Results10

To assess the performance of the proposed calibration ap-11

proach, we used an intelligent vehicle as test bed. The ATLAS-12

CAR2 [24] is an electric vehicle (Mitsubishi i-MiEV) with several13

sensors onboard. In this work four sensors were considered: two14

2D LiDARs and two RGB cameras. Thus, two different modalities15

of sensors are used. The sensors are designated as follows: left16

laser, right laser, top left camera and top right camera. Fig. 7 shows17

the ATLASCAR2 vehicle.18

The proposed approach is used to calibrate the four selected19

sensors simultaneously. Nonetheless, as discussed above, there20

are no approaches which provide an off-the-shelf multi-sensor21

multi-modal calibration. As such, in order to evaluate this ap-22

proach, we provide comparisons against other pairwise method-23

ologies, which are abundant in the field, as was mentioned in24

Section 1. Note that, in the following comparisons, the results25

given by the proposed approach for a particular pair of sensors are26

obtained using a complete system calibration. On the other hand,27

the alternative methodologies calibrate a single pair of sensors. In28

this sense, the comparison methodology is not favourable to the29

proposed approach, since the other approaches are specialized in30

the case being evaluated.31

In the following lines, two tests are detailed: the first is a32

camera-to-camera evaluation which compares several calibration33

methods in a pairwise fashion, while the second characterizes the34

proposed joint optimization over time providing global metrics.35

6 In this work we used the least-squares solver provided by SciPy: https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html.

4.1. Camera to camera 36

The methodology used to compute the error of the calibrated 37

poses of the top right camera and the top left camera is based on 38

the distance between pixel coordinates. These coordinates are, 39

on the one hand, the detected chessboard corners (ground truth) 40

of the top right camera and, on other hand, the coordinates of 41

the projections of those corners, to the top left camera, using the 42

transformation between the cameras which is the output of the 43

calibration. 44

To transform pixels from one camera to the other, we start 45

from the projection of the 3D world coordinates to the image of 46

a camera: 47

p = K ·
[
R t

]
· P (13) 48

where P refers to the 3D homogeneous coordinates of the corners 49

as viewed in the chessboard frame; p is a vector composed by 50

the u, v and w values, in which: xpixel = u/w and ypixel = v/w, 51

allowing for the direct extraction of image coordinates from this 52

vector;
[
R t

]
is the non-homogeneous geometric transformation 53

matrix from the camera frame to the chessboard frame, K repre- 54

sents the camera’s intrinsic matrix. Eq. (13) can be applied to each 55

camera separately. Since the 3D chessboard corner coordinates 56

are defined in the chessboard frame, the value of Z will be 0 for 57

all corners, because they all lie on the XoY plane: Z chess
= 0. As a 58

result, Eq. (13) may be simplified as follows: 59[u
v

w

]
=

[fx 0 cx
0 fy cy
0 0 1

]
·

[r11 r12 tx
r21 r22 ty
r31 r32 tz

]
·

[X
Y
1

]chess corners

, (14) 60

which is equivalent to: 61

pcamera
= K ·

camera T′

chess · Pchess , (15) 62

where the geometric transformation matrix cameraT′

chess is a por- 63

tion of the cameraTchess matrix, as detailed in Eq. (15). We use 64

(15) for both cameras, and relate both expressions by the 3D 65

coordinates of the chessboard corners (which are the same for 66

both cameras), resulting in: 67

pcam2
= Kcam2

·
cam2 T′

chess ·
(cam1T′

chess

)-1
·
(
Kcam1)-1

· pcam1 , (16) 68

where cam1 and cam2 refer to the top left and top right cam- 69

eras, respectively. This formulation provides the relation between 70

image coordinates of the chessboard corners for both camera 71

images of each collection. Notice, however, that calibration meth- 72

ods output the transformation between sensors, in this case be- 73

tween cameras, while Eq. (16) requires transformations from the 74

cameras to the chessboard. 75

Some approaches, as for example the proposed approach, also 76

estimate the pose of the chessboards (see parameters of the 77

calibration objects in Eq. (5)). Thus, at first glance, one could 78

think of using these transformations directly in Eq. (16). However, 79

these chessboard poses are estimated for a given training dataset, 80

and cannot be accurately used for other datasets. Moreover, as 81

said before, not all calibration approaches output the pose of 82

the chessboards (e.g. OpenCV stereo calibrate). Instead, calibra- 83

tion approaches provide the transformation between cameras. 84

By arbitrarily selecting one camera from which the chessboard 85

pose is determined through the solvePNP function (we have 86

used cam1, but tests have shown that the alternative provided 87

similar results) and using the transformation cam1Tcam2 estimated 88

by the calibration approaches, it is possible to determine the 89

transformation of the other camera to the chess, as follows: 90

cam2Tchess =

calibration  (cam1Tcam2
)-1

·

solvePnP  
cam1Tchess .

(17) 91

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
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Fig. 8. Pixel coordinates errors between projected (expected) chessboard corners and the ground truth indexes, from top left camera to top right camera, for each
collection, before the optimization procedure (a) and after the optimization procedure (b).

Table 1
Average errors and standard deviations along both directions, before and after
the optimization. Values in pixels.
Values Average error Standard deviation

Initial Final Initial Final

x error 2.25 1.64 2.68 1.69
y error 17.09 0.53 3.32 0.62
Both 17.34 1.83 8.71 1.51

From this expression the partial matrices cam1T′

chess and cam2
1

T′

chess are derived. Then, we apply Eq. (16) to compute the corner2

coordinates on the top right camera image, as projected from the3

detection of the top left camera image. The error is computed by4

measuring the difference between expected and projected corner5

coordinates on the top right camera image:6 [
x error
y error

]top right camera

=

[
x
y

]projected

−

[
x
y

]expected

. (18)7

Fig. 8 shows the errors related to the projection of the chess-8

board corners from the top left camera to the top right camera9

before and after the optimization of the position and orientation10

parameters of the cameras. These results can be better evaluated11

through the calculated mean error and standard deviation values,12

as shown in Table 1:13

Next, the proposed approach was compared with other cal- 14

ibration methodologies: stereo calibrate function7 provided by 15

OpenCV and the kalibr calibration method [26]. The kalibr method 16

requires hardware synchronization and receives a bag file as in- 17

put, unlike the other approaches, which make use of the datasets 18

collected as described in Section 2. Because of this, two different 19

calibrations are provided for kalibr: the first in which the training 20

dataset is used, and a second which uses the test dataset, i.e. the 21

dataset which is used to evaluate all approaches. 22

The results for the proposed approach are presented for two 23

different scenarios, taking into account the camera (top left or 24

top right) which was used for creating the initial values of the 25

chessboard poses (see Eq. (4)). These two variants are used to 26

assess the impact of the selection of the camera for providing 27

initial estimates on the final calibration estimates. 28

In this experiment, calibration of a pair of sensors composed 29

by the top left camera (cam1) and the top right camera (cam2) 30

is evaluated. The dataset used for running the calibration proce- 31

dures, i.e. the training dataset, is composed of 27 collections (27 32

images per camera). The test dataset to be used to evaluate the 33

estimated sensor-to-sensor transformations has 15 collections. 34

Images from the train and test datasets are similar. 35

7 https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_
3d_reconstruction.html?highlight=stereocalib#cv2.stereoCalibrate.

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=stereocalib#cv2.stereoCalibrate
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=stereocalib#cv2.stereoCalibrate
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Fig. 9. Flowchart representing the results comparison structure. Each ellipse
represents a JSON file and each rectangle identifies a programmed application.

In order to make this comparison fair, the three distinct cali-1

bration procedures are given the exact same information. More-2

over, the procedures were implemented in such a way that the3

returned estimated parameters, and remaining data, are orga-4

nized similarly to the proposed approach. This means that each5

distinct approach will output a final JSON file with the estimated6

position and orientation of the sensors. Taking all this into ac-7

count, a specific tool was created for visualizing the results of8

the different calibration procedures named Results Visualization,9

which imports the JSON files outputted by each one of the several10

approaches. Fig. 9 shows a flowchart of this framework, built11

specifically to compare the proposed methodology with standard12

pairwise approaches.13

Fig. 10 shows the pixel errors of the three distinct calibra-14

tion approaches. Note that the methodology described above15

is computed separately for each collection. The performance of16

the kalibr method is clearly below the other two. We suspect17

there are several factors contributing to this. The first is that this18

method requires hardware synchronization, not ensured in the19

used datasets. Another is that the kalibr method reads data from20

a bag file and thus we have no control over the images which21

are selected to run the calibration. In an attempt to address the22

problem, we ran a kalibr calibration using the test dataset as input23

(kalibr test in Table 2). It may be that the selection of images24

is not working well, which in turn causes a poor calibration25

performance. Also, due to the limited duration of the bag file of26

the experiment, only around 20 to 30 images have been selected,27

a total similar to the datasets we have used. It could be that kalibr28

requires a larger number of images. In any case, we believe these29

results are not representative of kalibr.30

The proposed approach and the stereo calibration display sim-31

ilar errors, which means that the proposed approach is on par32

with a state of the art calibration approach. Moreover, the largest33

error of each of the compared methodologies occurs for the same34

collection (in this case, for collection 4, the dark green). This35

also shows a high degree of consistency between the proposed36

approach and the stereo calibration.37

Table 2 shows the average error and the standard deviation of38

all tested calibration approaches.39

These results exhibit reprojection errors in the order of some40

pixels, which is the normal range of values for these methods and41

experimental setups. Moreover, the obtained values are very sim-42

ilar between the proposed approach and the stereo calibrate. As43

such, results show that the proposed approach is able to calibrate44

Table 2
Average errors and standard deviations, in pixels, for the distances in x axis and
y axis, for the proposed approach, the OpenCV stereo calibration and the kalibr
calibration method. For kalibr, two datasets were used for training: the train
dataset, which was also used to train all other approaches, and the test dataset,
which was used to evaluate all approaches. Values in pixels.
Calibration method Average error Standard deviation

x y x y

Proposed approach (left) 2.218 1.633 1.223 0.584
Proposed approach (right) 2.080 1.797 1.253 0.608
OpenCV stereo calibrate 1.251 0.903 1.509 0.767
Kalibr (train) [26] 67.383 8.887 0.832 1.722
Kalibr (test) [26] 1.187 17.999 1.369 2.225

all sensors on-board the ATLASCAR2 using a single optimization 45

procedure. Furthermore, the accuracy of this joint calibration 46

framework we propose is the same as when using state of the 47

art pairwise calibration methods. 48

4.2. Complete system calibration 49

This section will provide results concerning a full system cal- 50

ibration. Note that, in Section 4.1, the results focus only on 51

the evaluation of the camera sensors, despite the fact that the 52

complete system was also calibrated. In this section, the goal is 53

to characterize all the sensors and not just the cameras. Because 54

of this, it is not possible to compare the full system calibration 55

(taking into account all the sensors) with other approaches since, 56

as described in Section 1, there is no calibration framework 57

available, in particular a multi-sensor and multi-modal one. 58

Fig. 11 shows the average error per sensor over the cost 59

function evaluations, for a full system calibration test. The av- 60

erage error per sensor is estimated after the several error mea- 61

surements computed for each particular sensor. For example, a 62

camera cost sub-function returns as many residuals as chessboard 63

corners (see Eq. (7)), while the LiDAR sub sub-function returns 64

four measurements (see Eq. (10)). The average error for camera 65

sensors is provided in pixels, while for LiDAR sensors the error is 66

in metres. The first takeaway is that the optimization is working 67

as intended, since the minimization of the errors of all sensors 68

can be observed. This shows that the multi-sensor, multi-modal 69

optimization (the joint minimization of all the sensor’s parame- 70

ters) is in fact possible. Furthermore, the final errors values (after 71

the optimization is finished) are around a few pixels for camera 72

sensors (2.8 and 3.3 pixels for the top left camera and the top 73

right camera, respectively), and around a few centimetres for 74

the LiDARs (0.017 and 0.033 metres for the left laser and right 75

laser, respectively). These values are on par with the state of the 76

art, even when considering calibration results for pairwise ap- 77

proaches. Another important insight is the reason why the top left 78

camera residual starts with a low error: Section 3.1, in particular 79

Eq. (4), described how the initial poses of the chessboards were 80

estimated using one camera sensor, which is arbitrarily selected. 81

In this test, the top left camera was selected to produce the initial 82

chessboard pose estimates. Thus, since the corner detection in the 83

top left camera images are used to compute the initial chessboard 84

poses, the reverse procedure of projecting the chessboard corners 85

back to the image results in corner coordinates that are naturally 86

very close to the detections at the beginning of the optimization. 87

Fig. 12 shows the data from the LiDARs along with a repre- 88

sentation of the chessboard. For a better visualization, a single 89

collection is displayed. The four images correspond to different 90

stages of the optimization process. It is possible to see an im- 91

provement during the calibration (i.e. from Fig. 12(a) and (b), 92

the beginning of the optimization, to (c) and (d), the end of the 93

optimization, since the data from both LiDARs is much closer 94
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Fig. 10. Pixel coordinate errors between projected and expected chessboard corners. The kalibr results are not visible because of the selection of the axes range.

Fig. 11. Average error per sensor during a full system calibration procedure. Errors for cameras in pixels, for LiDARs in metres.

Fig. 12. Left laser (dots surrounded by red circles) and right laser (dots surrounded by green circles) data overlaid onto a representation of the chessboard, taking
in consideration the pose of the chessboard and the LiDARs as estimated by the calibration for one particular collection: (a) and (b) the start of the optimization
(initial guess); (c) and (d) the end of the optimization (calibration results).

to the chessboard plane (c) and (d) when compared to (a) and1

(b). This shows that the proposed approach is also capable of2

calibrating LiDARs within a joint optimization framework.3

5. Conclusions and future work4

This paper proposes an extrinsic calibration methodology that5

is general, in the sense that the number of sensors and their6

modalities are not restricted. The approach is compliant with7

the ROS framework, having also the advantage of not altering8

the tf tree. To accomplish this, the problem is formalized as 9

an optimization procedure of a set of partial transformations, 10

which accounts for specific links in the transformation chains 11

of the sensors. Additionally, the work contributes with a set of 12

interactive tools for the positioning of the sensors and labelling of 13

data, which facilitate the creation of a first guess and significantly 14

ease the calibration procedure. 15

Results show that the proposed approach is able to achieve 16

similar accuracy when compared to state of the art method- 17

ologies, implemented in OpenCV. Moreover, these results are 18
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obtained by performing a complete calibration of the system,1

rather than one of a single pair of sensors. In other words, the2

proposed approach calibrates all sensors at once, with similar3

performance as the pairwise approaches. This confirms that the4

proposed approach is adequate for the calibration of complex5

robotic systems, as are most intelligent vehicles.6

Future work will focus on the extension to additional sensor7

modalities, e.g., 3D LiDARs, RGB-D cameras, Radio Detection And8

Ranging (RaDAR), etc. Given the scalability of the proposed frame-9

work, it is expected that this should be more or less straight-10

forward. Finally, the ultimate goal is to produce a multi-sensor,11

multi-modal calibration package that may be released to the12

community.13
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